China Professional CE Certificated 0.4kw~400kw 220V 380V Variator Frequency Converter for Water Pump

Product Description

Product Description

LX200-PV photovoltaic water pump inverter is evolved on the basis of LX100-pv, and can support the control of permanent magnet water pump and asynchronous water pump at the same time
At the same time, DC and AC can also be connected at the same time, and there is no need to connect the transfer switch or switching module, so as to truly achieve seamless switching
With HMI intelligent control system, the interface is more friendly 

Our Advantages

 

Advantages of LX200 series
((1)Be suitable for single phase and 3-phase water pump.
(2)Built-in MPPT controller and excellent MPPT algorithm for various photovoltaic panels.
(3)IP54 cabinet solution, meets various harsh outdoor environments, and can be installed in the outdoor directly.
(4)Support the boost modular less than 2.2kW, increase the PV output voltage.
(5)Support PV input and AC grid input together, realize the switching function automatically, without human intervention.
(6)Include water level control logic, avoid dry run status and added full water protection.
(7)Start smoothly for reducing the voltage spike to motor.
(8)Low start voltage and wide input voltage range give more possibilities for accepting multi PV strings configuration and different type of PV module.
(9)Digital intelligent control can flexible adjust and set pump’s speed range. In addition to soft start function also can provide lightning protection,
overvoltage, over current, overload protection function.
(10)Support GPRS modular, people can operate the system by website platform or mobile phone apps.
 

 

Product Parameters

Item Value
Model Number LX200
Output Frequency 50/60HZ
Output Type Multiple
Certificate CE
Warranty 2 Years
MPPT( maximum power point tracking) 99% Efficiency
Application Agriculture Irrigation

 

Packaging & Shipping

 

 

Company Profile

 

 

Workshops

 

 

 

FAQ

1. who we are ?
We are based in ZHangZhoug, China, start from 2571,sell to Mid East(30.00%),Oceania(10.00%),South Asia(5.00%),Eastern Asia(5.00%),North America(5.00%),South America(5.00%),Western Europe(5.00%),Southern Europe(5.00%),Central America(5.00%),Northern Europe(5.00%),Africa(5.00%),Eastern Europe(5.00%),Domestic Market(5.00%),Southeast Asia(5.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Inverter, Frequency Inverter, VFD, Universal Inverter, Solar Water Pump Inverter

4. why should you buy from us not from other suppliers?
Xihu (West Lake) Dis. Xihu (West Lake) Dis.ng Electronic Technology Co.Ltd is a professinal manufacturer of Frequency inverter series ,engaged in R&D,producing and sales .
The products are exported all over the world and used widely in solar system,elevator system and industrial machines .

5. what services can we provide?
Accepted Delivery Terms: FOB,EXW,DDP;
Accepted Payment Currency:USD,EUR,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: High-performance Transducer, Three Phase Transducer, General Transducer, Single-phase Transducer
Output Type: Triple
Principle of Work: Vector Control Transducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

variator

How do variators contribute to smoother acceleration and deceleration in vehicles?

Variators play a significant role in achieving smoother acceleration and deceleration in vehicles, particularly those equipped with continuously variable transmissions (CVTs). The continuous and seamless adjustment of the gear ratio provided by variators allows for precise control of engine speed and power delivery, resulting in smoother changes in vehicle speed. Here’s how variators contribute to smoother acceleration and deceleration:

1. Continuous Gear Ratio Adjustment:

Variators in CVTs enable the continuous adjustment of the gear ratio, allowing the engine to operate at the most efficient and effective speed for a given driving condition. Unlike traditional transmissions with fixed gear ratios, variators provide an infinite number of gear ratios within their operating range. This continuous adjustment ensures that the vehicle’s engine stays within its optimal power band, resulting in smooth and responsive acceleration and deceleration.

2. Elimination of Gear Shifts:

Traditional transmissions with discrete gear ratios require frequent gear shifts during acceleration and deceleration, which can cause jerky movements or interruptions in power delivery. In contrast, variators eliminate the need for gear shifts altogether. The smooth and continuous adjustment of the gear ratio by the variator allows the engine to maintain a consistent and optimal speed, resulting in seamless acceleration and deceleration without the interruption of gear changes.

3. Precise Engine Control:

Variators enable precise control of the engine speed, allowing for finer adjustments during acceleration and deceleration. The engine speed can be matched more closely to the desired vehicle speed, resulting in smoother transitions. By continuously optimizing the gear ratio based on the driver’s input and the vehicle’s operating conditions, variators ensure that the engine operates in its most efficient range, leading to smoother acceleration and deceleration.

4. Adaptive Power Delivery:

Variators in modern CVTs are often equipped with advanced control systems that adapt the power delivery to match the driver’s demands and the road conditions. These control systems monitor various parameters such as throttle input, vehicle speed, and engine load, and adjust the gear ratio accordingly to provide the desired acceleration or deceleration response. This adaptive power delivery ensures that the vehicle responds smoothly to the driver’s inputs, enhancing the overall driving experience.

5. Seamless Transitions:

The continuous and infinite gear ratios provided by variators allow for seamless transitions between different driving conditions. Whether it’s transitioning from a standing start to cruising speed or decelerating from high speed to a stop, variators ensure that the changes in vehicle speed are gradual and smooth. This eliminates the abrupt shifts that can occur with traditional transmissions, resulting in a more comfortable and refined driving experience.

In summary, variators, particularly in vehicles equipped with CVTs, contribute to smoother acceleration and deceleration by providing continuous gear ratio adjustment, eliminating gear shifts, enabling precise engine control, facilitating adaptive power delivery, and ensuring seamless transitions between different driving conditions. These features result in improved drivability, reduced jerkiness, and enhanced comfort for the driver and passengers.

variator

How do electronic or computer-controlled variators improve performance and efficiency?

Electronic or computer-controlled variators, such as electronically controlled continuously variable transmissions (eCVTs), play a crucial role in improving the performance and efficiency of vehicles. These advanced variators utilize electronic control systems to optimize power delivery, adapt to driving conditions, and enhance overall drivetrain efficiency. Here’s a detailed explanation of how electronic or computer-controlled variators improve performance and efficiency:

1. Precise Control of Gear Ratios:

Electronic or computer-controlled variators offer precise control over the gear ratios. The electronic control systems continuously monitor various parameters such as vehicle speed, engine load, throttle input, and road conditions. Based on this information, the control system adjusts the gear ratios in real-time to ensure optimal power delivery. This precise control allows the engine to operate within its most efficient range, maximizing performance and improving fuel efficiency.

2. Adaptive Power Delivery:

Electronic or computer-controlled variators have the ability to adapt the power delivery based on driving conditions. The control system can analyze various factors, including vehicle speed, acceleration, and driver input, and adjust the gear ratios accordingly. For example, during highway cruising, the variator can keep the engine at lower RPMs to achieve better fuel efficiency. In contrast, during quick acceleration or overtaking, the variator can provide maximum power by adjusting the gear ratios for optimal performance. This adaptive power delivery enhances both performance and efficiency.

3. Optimization of Powerband Utilization:

Electronic or computer-controlled variators optimize the utilization of the engine’s powerband. The control system continuously adjusts the gear ratios to keep the engine operating within its optimal RPM range, where it generates the highest torque and power. By utilizing the engine’s powerband effectively, the variator ensures that the engine operates efficiently in a wide range of driving conditions. This optimization results in improved drivability, responsive acceleration, and better overall performance.

4. Seamless Transitions and Smooth Shifts:

Electronic or computer-controlled variators facilitate seamless transitions and smooth shifts between gear ratios. The control system ensures that gear changes are executed rapidly and with minimal interruption in power delivery. Unlike traditional transmissions with fixed gear steps, electronic variators can adjust the gear ratios continuously and steplessly. This eliminates the noticeable gear shifts and associated power interruptions, resulting in a smoother and more comfortable driving experience.

5. Integration with Vehicle Systems:

Electronic or computer-controlled variators can integrate with other vehicle systems to enhance performance and efficiency. They can communicate with the engine management system, traction control system, and other electronic control units to optimize the overall drivetrain operation. For example, the variator can work in conjunction with the engine management system to adjust the engine’s operating parameters based on the desired power delivery. This integration ensures coordinated and efficient operation of various vehicle systems, ultimately improving overall performance and efficiency.

6. Enhanced Efficiency through Advanced Control Algorithms:

Electronic or computer-controlled variators utilize advanced control algorithms to optimize performance and efficiency. These algorithms take into account multiple inputs, such as vehicle speed, engine load, temperature, and driver behavior, to make intelligent decisions regarding gear ratio adjustments. The control system can continuously learn and adapt to individual driving styles, further improving efficiency over time. The use of advanced control algorithms allows electronic variators to achieve higher levels of efficiency compared to traditional mechanical transmissions.

7. Real-Time Monitoring and Diagnostics:

Electronic or computer-controlled variators offer real-time monitoring and diagnostics capabilities. The control system can monitor the health and performance of various components within the variator, as well as detect any abnormalities or potential issues. This allows for proactive maintenance and timely repairs, ensuring optimal performance and reliability. Real-time monitoring and diagnostics contribute to the overall efficiency and longevity of the variator.

In conclusion, electronic or computer-controlled variators improve performance and efficiency through precise control of gear ratios, adaptive power delivery, optimization of powerband utilization, seamless transitions, integration with vehicle systems, advanced control algorithms, and real-time monitoring and diagnostics. These advanced variators optimize power delivery, enhance drivetrain efficiency, and provide a smoother, more responsive driving experience, ultimately improving both performance and fuel efficiency.

variator

Are there specific applications where variators outperform other transmission systems?

Yes, there are specific applications where variators, particularly those used in continuously variable transmissions (CVTs), can outperform other transmission systems. The unique characteristics and capabilities of variators make them well-suited for certain scenarios. Here’s a detailed explanation of the specific applications where variators outperform other transmission systems:

1. Urban Driving and Stop-and-Go Traffic:

Variators excel in urban driving conditions and stop-and-go traffic situations. In congested areas with frequent speed changes, variators offer seamless and continuous gear ratio adjustment. This allows the engine to operate at optimal RPM levels, resulting in improved fuel efficiency and smooth power delivery. The absence of discrete gear shifts eliminates the need to constantly shift gears, providing a more effortless and comfortable driving experience.

2. Hill Climbing and Off-Road Driving:

When it comes to tackling steep inclines or challenging off-road terrains, variators can outperform other transmission systems. The continuous gear ratio adjustment of variators ensures that the engine maintains the appropriate power and torque delivery for climbing hills or traversing rough terrain. This adaptability allows vehicles equipped with variators to maintain momentum and traction, providing superior performance and control in demanding off-road conditions.

3. Smooth and Responsive Acceleration:

Variators offer excellent performance in terms of smooth and responsive acceleration. The stepless gear shifts provided by variators eliminate the jolts or interruptions in power delivery that can occur with traditional gear systems. This seamless acceleration allows for quick and efficient merging onto highways, overtaking other vehicles, or responding to sudden changes in traffic conditions. Variators can deliver a more engaging driving experience by providing instant response to throttle inputs.

4. Hybrid and Electric Vehicles:

Variators have proven to be advantageous in hybrid and electric vehicles. In hybrid vehicles, variators can be used in combination with internal combustion engines and electric motors to optimize efficiency and power delivery. The continuous gear ratio adjustment of variators allows for seamless integration between the different power sources, ensuring that the engine operates within its most efficient range. In electric vehicles, variators can be utilized to provide a smooth and efficient transfer of power from the electric motor to the wheels.

5. High-Performance Sports Cars:

In certain high-performance sports cars, variators can outperform traditional gear systems. Variators offer the advantage of quick and precise gear ratio adjustment, allowing the engine to stay within its optimal power band during aggressive acceleration and high-speed driving. This results in enhanced performance, improved acceleration, and seamless power delivery, making variators an attractive choice for sports car enthusiasts.

6. Fuel Efficiency and Emission Reduction:

Variators, especially those used in CVTs, are known for their potential to improve fuel efficiency and reduce emissions. The continuous gear ratio adjustment ensures that the engine operates at the most efficient RPM, maximizing fuel economy. By avoiding inefficient gear shifts, variators contribute to reduced fuel consumption and lower emissions, making them a preferred choice for eco-friendly and fuel-conscious vehicles.

In summary, variators can outperform other transmission systems in specific applications such as urban driving, stop-and-go traffic, hill climbing, off-road driving, smooth and responsive acceleration, hybrid and electric vehicles, high-performance sports cars, and fuel efficiency-focused applications. The unique characteristics of variators, including continuous gear ratio adjustment and seamless power delivery, make them well-suited for these scenarios, offering advantages in terms of performance, control, and efficiency.

China Professional CE Certificated 0.4kw~400kw 220V 380V Variator Frequency Converter for Water Pump  China Professional CE Certificated 0.4kw~400kw 220V 380V Variator Frequency Converter for Water Pump
editor by CX 2024-03-28

Tags: variator